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The three-phonon scattering relaxation rates and their temperature exponents have 
been analysed in the frame of Guthrie's classification of the phonon-phonon scattering 
events as class I and class H events and as a result of this, a new expression T3p ~ = 
= (BN, t + Bu, i e-~ (BN, n q- B'O, IIe-~ TraIl(T) for the three 
phonon scattering relaxation rates has been proposed for the first time to calculate the 
lattice thermal conductivity of a sample. Using the expression proposed above, the 
lattice thermal conductivity of Ge has been analysed in the temperature range 2 -- 
1000K and result obtained shows a very good agreement with the experimental data, 
The percentage contributions due to three-phonon normal and umklapp processes are 
also reported. The role of four phonon processes is also included at high temperatures, 
To estimate an approximate value of the scattering strength and the phonon conductiv- 
ity, the analytical expression is also obtained in the frame of the expression proposed 
above for r3~1. 

The p h o n o n - p h o n o n  scattering re laxat ion  rate has been studied by a number  of  
workers  [ 1 -  13] due to its very impor t an t  role  in the latt ice thermal  conduct iv i ty ,  
and it has been found  that  the th ree -phonon  scat ter ing re laxat ion  rate  involves a 
compl ica ted  dependence  on the phonon  frequency and t empera tu re  due to the com-  
pl icated structure of  the Bril louin Zone  and the s t rong t empera tu re  dependence  of  
the d is t r ibut ion  function.  As a result  of  this, even at present  we lack an exact ana-  
lytical expression for it. However ,  for  pract ical  purposes ,  it has been expressed by 
simple re la t ions [ 1 -  13] as a funct ion of  the phonon  frequency and tempera ture .  
I t  is also found that  the p h o n o n - p h o n o n  scat ter ing processes can be divided 
into two groups ;  normal  processes (N processes) in which m o m e n t u m  is con-  
served, and umk lapp  processes (U processes) in which m o m e n t u m  is not  conserved.  
The roles of  N and U processes have been s tudied by a number  of  w o r k e r [ 1 4 -  22] 
by calculat ing the phonon  conductivi t ies  o f  different samples.  

Recently,  Guthr ie  [7, 8] s tudied the th ree -phonon  scat ter ing re laxat ion  rate by 
dividing p h o n o n - p h o n o n  scattering events into two classes : class I events, in which 
the carr ier  phonon  is annihi la ted  by combina t ion  and class I I  events, in which the 
carrier  phonon  is annihi la ted  by splitt ing. Fo l lowing  Guthr ie ,  the th ree -phonon  
scat ter ing re laxat ion  rate t~lh can be expressed as 

t:~h = %~h(ClaSS I) + z3~(c la s s  II)  (1) 
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He also pointed out that the three-phonon scattering relaxation rate due to each 
class of events could be expressed as 

z ~  h oc g(w)f(T) (2) 

wheref(T) = T re(T) and m(T) is a continuous function of temperature T. Verma et 
al. [9, 10, 23-25] were the first who attempted to incorporate the Guthrie expres- 
sion to calculate the phonon conductivity of some insulators, by expressing the 
three-phonon scattering relaxation rate as 

~ h  = B g(w) T re(T) e -~ (3) 

Terms are explained in the following section. However they could not include the 
contribution due to the three-phonon N processes in the calculation of the lattice 
thermal conductivity. At the same time, the expression ased for re(T) includes an 
empirical factor (1 + 0/aT). 

Following Verma et al. considering the Guthrie [7] classification of phonon- 
-phonon scattering events and including the contributions due to three-phonon N 
and U processes, a new expression for z~l h is proposed as 

"C~-;h = (BN, I -I- BU, I e -~ g(w) T m I (T) + (BN, II q- Bu ,  I I e  -O/~T) i f (w)  T rn II (T) 
(4) 

Terms are explained in the following section. No distinction is made in the value 
of m(T) for the three-phonon N and U processes, due to the fact that Guthrie 
obtained the same value of the temperature exponent m(T) for both processes. The 
value of the temperature exponent m(T) used in the present work differs from that 
used in the work of Verma et al. in that in the present analysis it does not include 
any empirical relation. 

To see the applicability of the expression proposed, the phonon conductivity 
of Ge has been calculated in the entire temperature range 2-1000 K as an example 
within the framework of Z~h given in Eq. (4). The values of m~(T) and mu(T ) are 
also calculated, to permit a comparative study with the temperature exponent 
m(T) used in the Sharma-Dubey-Verma (SDV) model [9, 10], as well as with the 
upper limit of m(T) obtained by Guthrie. The percentage contributions of the three- 
phonon N and U processes towards the three-phonon scattering relaxation rate 
have been studied for both transverse and longitudinal phonons, and also for class 
I and for class II events. The percentage contribution of "f3-1 h towards the combined 
scattering relaxation rate has also been studied for both transverse and longitudi- 
nal phonons. To examine the relative contributions of transverse and longitudinal 
phonons towards the total phonon conductivity, the percentage contributions due 
to transverse and longitudinal phonons have also been studied in the entire temper- 
ature range 2-1000 K. 

Analytical expressions have been obtained to estimate approximate values of 
the scattering strength and the lattice thermal conductivity. A comparative study 
is made between the results of the present analysis and the earlier reports of other 
workers. 
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Three-phonon scattering relaxation rate and its temperature exponents 

It  is well established that  the three-phonon scattering processes dominate  over 
other scattering processes at high temperatures.  At  the same time, they are no t  
negligibly small at low temperatures.  They play a very impor tant  role even in the 
vicinity of  conductivity maxima. However,  due to the complicated structure of  the 
Brillouin Zone and the strong temperature dependence of  the distribution funct ion,  
even at present we lack an exact expression for it. The p h o n o n - p h o n o n  scattering 
procecces, N and U processes, have been studied widely, their scattering re- 
laxation rates being expressed by simple relations as functions of  the phonon  fre- 
quency and  temperature (see Table l). The lattice thermal conductivities o f  several 

Table 1 

The scattering relaxation rates. In these expressions, B's are constants and are known as the 
scattering strengths of the respective processes, L is the Casimir length of the crystal, A is the 
point-defect scattering strength, v is the average phonon velocity, q~,x is the Zone boundary 

of the first Brillouin Zone, ~ is a constant and 0 is the Debye temperature 

I 
Scattering processes 

i 
Relaxation rates 

Crystal boundary [39] 
Impurities [4] 
Three-phonon processes *fo~ 
Normal processes (N processes) 
%kN [ll 

Transverse 
Longitudinal 
Transverse 
Longitudinal 
Umklapp processes (U processes) 

--1 
T3Ph, U 

Klemens [3 ] 
Klernens [2] 
Holland [6] (for transverse) 

Callaway [5] 
Klemens [2] 
Four-phonon processes ~ 

Tg 1 = v/L 
"r,p~ 1 A w 4 

~Er~ BLwZTa I atlowtemperatures 
vg~ = B~wT ] 
TL- ~ B.LweT j at high temperatures 

TqJ = BuwZT3e -~ 
.r~l B,uw T3e_O/~,T] at low temperatures 

r~l  = BTuW2/sin h(hw/kgT) ~qn,ax -- q .... 
z~ 1 = 0 0 -- �89 
"r~l = n v w 2 T  3 
T~ ~ = B'uwZT at high temperatures 
~c 4-pt n = BwZT 2 

samples have been calculated [ 2 6 -  35] in the f ramework o f  the combined scattering 
relaxation rates (see Table 2), at both low,and high temperatures,  using the expres- 
sions reported in Table 1. 

The combined scattering relaxation rate due to the three-phonon scattering pro- 
cesses can be expressed by Eq. (1). According to Guthrie,  the p h o n o n - p h o n o n  scat- 
tering relaxation rate has the form of  

~:~1 h ~ g ( w )  T ~(T) 
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Table 2 

The combined scattering relaxation rates. In these expressions, wo is the Debye frequency, 
0 is the Debye temperature, wt and w2 are the transverse phonon frequencies at ~/., qmax and 
qrnax, respectively, wa and w4 are the same for longitudinal phonons, qmax is the Zone boundary 
of the first Brillouin Zone, e is a constant depending on the dispersion curve and m is the 

temperature exponent 

Author  and reference Combined scattering relaxation rates Frequency 
range 

Callaway [5 ] 
Holland [6] 

Joshi and 
Verma [11 ] 

SDV model 
[9,10,23] 

Dubey and 
Misho [12] 

Present work 

T e  I = Tff 1 ~- T ~  1 -q- ( a  1 "q- B2)w2T 3 
To. 1 = TB 1 -~ T~-t I --[- BTNWT 4 
T~ 1 = TB 1 -1- T ~  1 -1- BTuWZ/sin h(hw/kBT) 
-C~,,1L = -eft I + Tpt I + BLW2T a 

T~, 1 = TB 1 -~ Z~  1 -q- BTwT m 
T~,,[ = T i  1 + Tpt I + BLW~T m 

(m = 1, 2, 3 or 4 depending on temperature range) 

-r~,~ = rff 1 + "rfftt I + BTAW TmT, I~T) e--~ 
Tr 1 = ~B 1 "~ T~t 1 "A I- BL, lW2TmT, 1 ('D e--O/sT 

-]- BL, IIW2TmT, [ ~ T ) e - ~  

-~c_l : ~-~I + -Opt l -I- (BTN "~ BTU e-~ 
Tc__IL = .yffl .~_ ~y~tl "F (BI_N + BLue-~  

(m = 1, 2, 3 or 4 for transverse phonons depending on 
temperature range, and m = 1, 2 or 3 for longitudinal 
phonons depending on temperature range. 

BXN ~--- Bxo  e-~ at room temperature, i.e. at T = 300 K, 
where X = T or L) 

"t'~, 1 "~" r i f  t "F "t'~ I -[- (B-IN, I -{- BTU ' t e -~  I (T) 
T~, 1 ~--. T~  1 -~- T ~  1 -~- (BLN, I 2V BLU" i e-~ I(13 

+ (BLN,II + BLu, n e-~ II (T) 

0 - -  W D 

0 - -  W 1 

W 1 - -  W 2 
0- -  w~ 

0 - -  Wg 

0- -  w~ 

0 - -  W 2 

0--  w4 

0 - -  w2 
0- -  w4 

0 - -  W 2 

where g ( w )  is the frequency deFendence of the three-phonon scattering relaxation 
rate;  g(w) = w for transverse phonons ,  and g ( w )  = w 2 for longi tudinal  phonons ,  
which are the same as obtained by Herring [1 ]. Guthr ie  suggested that  the temper- 
ature exponent  m ( T )  is a cont inuous  funct ion of temperature T. He also pointed 
out that the temperature dependence of the three-phonon scattering relaxation 
rates (z~-lh Ct T 4 for transverse phonons  and Z~-olh C~ T ~ for longi tudinal  phonons)  
obtained by Herr ing is valid at low temperatures only, and should not  be used at 
high temperatures.  At  the same time, it is interesting to note that  Guthrie  could 
not  give any suggestion for the exact value of r e ( T )  which should be used in the 
calculation of the lattice thermal  conductivity,  except that he obtained the maxi- 
m u m  and m i n i m u m  values of re(T): For  class I events, 

[m(T)max ] = Xmax[2(e . . . . .  1 ) - - 1 _ [ _  L 0 J -  1.0 (5) 
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[ m ( Z ) ] m i  n = 1 . 0  

and for class II events, it is given by 

[m(T)]ma x = 1.0 

[ m ( T ) ] m i  n = X m a x ( e  . . . . .  1 . 0 ) - i  80.5 . . . . .  

(6) 

(7) 

(8) 

where Xma x = hW . . . .  T ,L /kB T, h is the Planck constant divided by 2~, k B is the 
Boltzmann constant, and Wm~ is the phonon frequency at the boundary of the 
first Brillouin Zone. Suffixes T and L represent transverse and longitudinal pho- 
nons, respectively. Thus, it is clear that re(T) is different for transverse and lon- 
gitudinal phonons, due to their frequencies at the Zone boundary. Guthrie also 
pointed out that the numerical value of [ m ( T ) ] m a  x for class I events should not 
exceed 4 for transverse phonons and 3 for longitudinal phonons. The maximum 
value of re(T) at any temperature can be clarified with the help of  Table 3, where 
the Guthrie upper limit of re(T) is reported for Ge, Si, GaAs and InSb. 

Thus, there is still large uncertainty in assigning an exact value of re(T). Joshi and 
Verma [11] used the maximum value of re(T)in the calculation of the lattice ther- 
mal conductivity of Si, as reported in Table 3. Thus, they could not use a contin- 
uous value of re(T). At the same time, they considered the contribution of the 
three-phonon N processes only (see Table 1 in ref. [11]). In the lack of an exact 
value of re(T) and to minimize the uncertainty, it is more realistic to use an average 
value of its maximum and minimum value in place of its extremum value. Thus, 
the m(T) used in the present analysis for class I events can be expressed as 

mi(T ) = Xmax(e . . . . .  1)-1 _[_ 0 . 5 X m a  x (9) 

while for class II  events it takes the form 

mii(T ) = 0 . 5 X m a  x (e . . . . .  l )  e 0'5 . . . . .  -{- 0 . 5  (lo) 

Table 3 

Guthrie's limits for the temperature exponent m for Ge, Si, GaAs and InSb. a 

Material  

Assumpt ion  o f  I 
w T '  ! 
relation 

invalid f r invalid for 
T >  T >  

K K 

20 26 
43 55 
20 26 
13 16.5 

L ____ 

Ge 
Si 
GaAs 
InSb 

Assumpt ion  
of  w z T ~ ~ o  I a T  m 

relation where m < 4 
i f  T >  

K 

90 
149 
85 
54 

~3-o I =Tm 
where m < 3 

i f  T >  
K 

115 
190 
108 
69 

a - see Table 2 of ref. [7] 

z3~ I o:T m 

where 
m < , 2 i f  

T >  
K 

167 
282 
159 
103 

i 
I 
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As stated earlier, the phonon-phonon scattering processes can be grouped into 
two groups. The N processes are those in which momentum is conserved, and the 
scattering relaxation rate due to such processes can be expressed as 

- 1  rZph, N ----- B N g(W)  T m(T) ( 1 1 )  

where B N is the scattering strength of the three-phonon normal processes, and 
suffix N is used to represent N processes. The other group of processes are the 
three-phonon U processes in which momentum is not conserved. According to 
Klemens [2, 3], the scattering relaxation rate due to these can be expressed as 

- 1  (12) T3ph, U = Bu g(w) T re(T) e-  o/~x 

where Bu is the three-phonon U process scattering strength, 0 is the Debye tem- 
perature of the specimen under study, c~ is a constant depending on the crystal 
structure of the sample, and suffix U represents U processes. Thus, the scattering 
relaxation rates due to class I and class II events can be expressed as 

T-13ph, I = (BN, I + Bu, Ie-OI~T) g(w)TmI(T) (13) 

Z -1 = (BN, II + Bc, iie-~ (r) (14) 3ph, 11 

The same frequency dependence is assigned to N and U processes, due to the fact 
that it depends only on the polarization branches. The same value of m(T) is used 
for both processes, since Guthrie [7] obtained the same value of m(T) for both N 
and U processes. 

The classification of Guthrie of class I and class II events leads to the participa- 
tion of transverse phonons alone in class I events, and the participation of longitu- 
dinal phonons in both class I and class II events. As a result the three-phonon scat- 

-1 due to transverse phonons takes the form tering relaxation rate -rph ' T 

- 1  = ( B T N  ' -t- Bru, ie-~ l (T) (15) T3ph, T I 

because the contribution due to class II events is not possible for transverse pho- 
nons. Similarly, for longitudinal phonons, the three-phonon scattering relaxation 

-1 can be expressed as rate T3ph, L 

T-13ph, L : (BLN,  I + BLu, Ie-~176 w2TmL, I(T) + (BLN,  n + BLu, ne-~ II(T) 
(16) 

Thus, the expression for Z~h used in the present analysis is based on the division 
into class I and class II events, also N and U processes. 

Besides the three-phonon scattering processes, four-phonon scattering processes 
too play an important role in the study of the lattice thermal conductivity at high 
temperatures. According to Pomeranchuk [36-38] ,  the four-phonon scattering 
relaxation rate can be expressed as 

T4plh "--~ B H  w 2 T  2 (17) 
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DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY 269  

where Br~ is the four-phonon scattering strength. The lattice thermal conductivities 
o f  several samples have been calculated [20, 27, 31 ] by using the above expression 
for Zgp~h, and it has been found to give a good response to the phonon conductivity 
at high temperatures. 

It has been shown [39-41]  that the lattice thermal conductivity of an insulator 
at  very low temperatures can be explained very well on the basis of boundary scat- 
tering alone. According to Casimir [39], the boundary scattering relaxation rate 
has the form z~ ~ = v/L, where v is the average phonon velocity and L is the charac- 
teristic length associated with the crystal under study. Since the boundary scattering 
is important for low-frequency phonons only, it is immaterial whether v is a phase 
or  a group velocity, because for low-frequency phonons phase and group veloci- 
ties are almost equal and it is sufficient to use the low-frequency value for v. The 
characteristic length L is determined by the crystal geometry and is assumed to be 
the same for all phonons. It is found that the theoretical value of L does not usually 
agree with the experimentally measured value of the phonon conductivity. It is 
further found that L = F times the length of the crystal, where F is an adjustable 
parameter, usually of the order of unity. 

The scatterings due to isotopes, point-defects, etc. are most important scattering 
mechanisms at temperatures near the conductivity maxima. At such temperatures, 
high-frequency phonons are not excited to a large extent and it is reasonably good 
to use the Klemens [2] expression for the point-defect scattering relaxation rate 
zpt 1 a s  Zpt 1 = A w  4, which has been obtained for low-frequency phonons, were A is 
the point-defect scattering strength. A careful analysis of the Klemens expression 
shows that A depends on the polarization branches and it should be different for 
longitudinal and transverse phonons. Longitudinal phonons contribute only a little 
[42] towards the total phonon conductivity as compared to transverse phonons. 
Thus, it is sufficient to use A for transverse phonons, as was done by earlier workers 
too. The expression for A, as obtained by Klemens, can be expressed as 

A = (Vo/47rv a) 2"ifi(1 - mi/N) z (18] 

where 17o is the atomic volume, rn i is the mass of the ith species of the atom, f ,  
is the fractional concentration of the ith species, ~ is the average atomic mass of  
the host lattice atom, and t~ is the average phonon velocity. 

Thus, the combined scattering relaxation rates for transverse phonons, z -~ ~c, T 
and for longitudinal phonons, z-a used in the present analysis are given by c, L, 

Zc, T "['B 1 + Aw4 + (BTN,  I + BTU, Ie-OI~T) W T m T ,  I(T) + BUT w2Tz (19) 

z-1  = n e-O/~T~w'2TmL, [(T) r ZB 1 + Awa + (BLN,I + a"LU,I  ) -[- 

+ (BLN, U + BLu,ue-~ II (T) + BuLW2T 2. (2o~ 
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Phonon conductivity integral and analytical expressions 

To have an expression for the lattice thermal conductivity, one needs to solve the 
Boltzmann equation which can be expressed as [5] 

-~-~-c V r  ~-~ = 0  (21) 

where N is the distribution function, c is the group Velocity, -~-  c represents the 

rate of change of the distribution function due to collisions and ~ -  is the same 

due to the temperature gradient V T. Considering the speciaFrole of three-phonon 
ON 

N processes, Callaway [5] expressed -~-  as 

( ~ N I N O ' ) - N N o - N  
- ~ -  - -~ (22) 

"ON gR 

where *r~ and ZR are the scattering relaxation times due to momentum conserving 
and momentum non-conserving processes, respectively, No is the Planck distri- 
bution function andN(2) is the displaced distribution due to three-phonon N pro- 
cesses. If  one solves Eq. (21) in terms of Eq. (22) to have an expression for the lat- 
tice thermal conductivity K, it is found that K can be expressed as the sum of two 
components. The first part is due to the combined scattering relaxation rate and 
consists of a single integral (in the approach of Callaway), whereas the second part 
is of a complicated form and is known as the correction term [5] (AK) due to the 
three-phonon N processes. In the absence of N processes, it reduces to zero. 

However, Catlaway [5, 43] and others [44-48] have studied the contribution 
of the correction term (AK) due to the three-phonon N processes, and have found 
that this is very small as compared to the contribution due to the first part. Solid 
He [43], LiF [49] and solid HD [50] are exceptions to this. It has further been re- 
ported that the contribution of AK towards the total phonon conductivity is negli- 
gibly small [51-  53] in the generalized Callaway integral [54, 55] at low and at 
high temperatures. Therefore, the contribution due to AK has been neglected in the 
present analysis. 

Considering the spherical symmetry of the Brillouin Zone (i.e. of three polariza- 
tion branches, two are transverse and one is longitudinal) and the fact that each 
phonon contributes separately towards the total phonon conductivity, the contri- 
bution due to each mode of phonons can be expressed as 

Ki = (1/6rc2) J" ~r v2i (hw/kB T2) ehw/ksT ( ehw/k"T -- 1)- 2 q2 dq (23) 

where the integration is performed over the first Brillouin Zone, v,i is the group 
velocity corresponding to the polarization branches under study, q is the phonon 
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wave vector corresponding to the phonon frequency w, and suffix i is used to distin- 
guish polarization branches. 

Callaway and also Holland [6] expressed q in terms of w inside the conductivity 
integral in the Debye approximation, i.e. q = w/v, which is valid for low-frequency 
phonons only. Following Verma et al. [56], in the present analysis a better relation 

q = (w/v)(1 + rw 2) (24) 

has been used to change q into w inside the conductivity integral in Eq. [23], 
where r is a constant and depends on the dispersion curve of the sample under 
study. The constant r can be calculated with the help of the dispersion curve. It  is 
interesting to state here that the velocity of the phonons is not the same in the 
entire range of the first Brillouin Zone. It has a larger value for low-frequency pho- 
nons as compared to high-frequency phonons. To be more exact, the entire first 
Brillouin Zone has been divided into two parts : 0 to 1/2qma, and 1/2qmax to qmax, 
where qma• is the phonon wave vector corresponding to the Zone boundary of the 
first Brillouin Zone. At the same time, it should also be noted that the dispersion 
constant r is calculated separately for these two regions. Thus, the total lattice ther- 
mal conductivity can be expressed as 

K =  K, r + KL (25) 

where KT and K L are the contributions due to transverse and longitudinal phonons, 
respectively. These are given by 

01/r 

K T  = (C/VTt )  .l" rc, Tx4e'(eX --  1 ) - 2  (1 + RIx2) 2 (1 + 3 R I X 2 )  - I  dx 
o 

02/T 

+ (C/vx2) .I Zc, xxaex(e~ -- 1)-2(1 + R2X2)2(1 ~- 3R2x2) - ldx  (26) 
0liT 

03IT 

KL = ( C / 2 v L 1 )  .t" "Cc, Lx4ex(ex -- 1)-Z(1 + Rax2)Z(1 + 3R3x2)- l  dx  
o 

04IT 

+ (C/2VL2) .~ %,Lx4e~(e " -  1)-2(1 + R~x2)2(1 + 3 R ~ x 2 ) - l d x  (27) 
0 jT  

where C = (kB/3n2)(kBT/h) a, R i = ri(kBT/h)2; i = 1, 2, 3 and 4; 

tz-1 ~-i .  X = T and L; 0i = (hwi/kB); i = 1, 2, 3 and 4; Tc, X z ~ c ,X] 

vxl and VTZ are transverse phonon velocities in the range 0 -  1/2"qmax and 1/2 q . . . .  
respectively, v u and v~2 are the same for longitudinal phonons, w~ and w2 are 
transverse phonon frequencies corresponding to wave vectors 1/2 q . . . .  q . . . .  re- 
spectively, wa and w~ are the same for longitudinal phonons, r I and r2 are the dis- 
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persion constants for  transverse phonons  in the region 0 -  1/2 qmax and 1/2 qmax-- 
qmax, respectively, ra and r4 are the same for  longitudinal phonons ,  and z -~ and  - -  c, T 

.C-1 r are the combined scattering relaxation rates due to transverse and longitudi- 
nal phonons ,  respectively, as given in Eqs (19) and (20). The above conductivi ty 
integrals are evaluated to find analytical expressions for  the lattice thermal  conduc-  
tivity at  high and at low temperatures .  

At  high temperatures ,  the upper  limit of  all the four  integrals, Oi/T (i = 1, 2, 3 
and 4), is a small quanti ty due to the large value of  T, which results in x ~ 1, 
and x 2 e ~ (e x - 1) -5 reduces to unity. Thus,  the conductivi ty integrals can be eval- 
uated analytically as below: 

(A) I f  Z~plh >> z,-p~ >> Zp-t 1 

= 

+ 

+ 

K L = 

(C/VT1 bT) [X~/2 - (R1/4) X4 -- (5R~/6) X ~ - (D/bT) {X5/5 - (R~/7) X 7 --  

(5R~/9)Xg}  - (baT/bT) {X3/3 - ( R I / 5 ) X  5 -  (5R2/7 )xT}]  + 

C/ (3R2vT2br)  [1/3 In (02/01) + ( 5 R 2 / 6 ) Y  2 + (R~/4) Y '  + (R2/6) Y - 2 -  

(D /bO {Y3/9 + ( R 2 / 3 ) Y  5 + ( R 2 / 7 ) Y  7 - ( R 2 / 3 ) Y }  - (bnT/bT) { r / 3  + 

(5RJ9)  ya  + R E y5 + (R2/3) y - l } ]  (28) 

C/(2Vu  bL) [X1 - D/3bL) X31 - (bnL/bL) X1] + C/(2vL2bL) [Y1 -- (R4/3)Y~ -- 

- R 2 y ~  - (D/bL) {Y~/3 - (R4 /5 )Y~  - (5RE/7)YTa} -- (bilL/bE) { Y 1 -  

- ( R a / 3 )  Y31 - Rz~ r ~ } ]  

(B) I f  z~-lh >> "c3~r~ >> z~t 1 

KT = C/(VT~ baT) [X -- ( R 1 / 3 ) X  3 -- R~ X 5 - (D/buT)  {X3/3 - ( R 1 / 5 ) X  5 - 

- ( 5 R ~ / 7 ) X  7} -- (bT/bnT) {In (X) - (R1 /2 )X  ~ -  ( 5 R ~ / 4 ) X ' } ]  + 

+ C/ (3Rz  VT~ bHr) [(5R2/3) r + (RE/3) r z - (R2/9) V -z  - r - I / 3  - 

(D/bHT) {II/3 + ( 5R2 /9 ) r  z + (R~ /5 ) r  5 - ( R 2 / 3 ) y - l }  _ 

(br/br~r) {(5R2/3) In (02/01) + (R~/2) Y~ + (R2/12) Y-~ -- Y-~/6}] 

C/(2vubHL)[XI(1  - b E / b i l L )  -- (D/3bHL)X31] + C/(2VL~bnL)] { Y 1 -  

( R 4 / 3 ) Y ]  2 5 - R ,  Y~} (I - b J b a L )  -- (D/bHL) { Y~/3 

(R,/5) Y~ - (5R,:/7) r~}] 

K L = 

where 

S = 01/T, X l  = 03/T,  yn = [(0~/73n _ (OjT)~];  

Y~ [(O,/T)" - (Oz/T)n]; n = 1, 2 ,  3 . . . .  

n = 1, 2, 3 . . . .  

(29) 

(30) 

(31) 
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D = A ( k  B T/~)  4, bnw = BaT(kB/ f t )  z T 4, bilL = B a , , ( k n / h )  2 T4,  

bT = (BTN, I + BTU, I e -O/~T)(kB/h)  T m T ,  I(r)+l 

bL = (BEN, I + BLU, x e-O/~T)(kB/Ct) 2 T m L ,  l(T)+2 

+ (BLN, I[ + BLU, n e -~ ( k B / h ) Z T m L ,  l I  (T)+~ 

At low temperatures ,  the contr ibut ions of  the second integrals in Eqs (26) and  
(27) are very small as compared  to the contr ibut ions due to the first integrals and 
can be ignored. At the same time, due to the small value of  T, the upper  limits 
O1/T and 0 3 / T  of  the first integral in Eqs (26) and (27) are large enough. Thus,  the 
factor  (e ~ - 1) can be approximated  to e x. With these approximat ions ,  one has the 
following analytical expression for  the lattice thermal  conductivi ty:  

(C) I f  Z31h >> Zp-t I > z~ I 

K T = C/(VTlbT)  [ ( Z  5 - -  R~ Z 5 - 5R 2 Z 7) - (D/bT)  (Z 6 - R~Z 8 - 5R 2 Z 10) - -  

-- (z~l/br)  ( Z  z - R ~ Z  4 - 5 R E Z  6) - (bnT/bT)  ( Z  ~ -- R 4 Z  6 -- 5R2ZS)] 
(32) 

(33) K e = C / ( 2 V L l b L ) [ Z ~ -  ( D / b L ) Z  ~ - ( ' c ~ l / b e ) Z  ~ - ( b n t l b L ) Z ~ ]  

where 

Z n = 1 -- n ! e - X 2 ( y ' ~ / ( n  -- 1)! + Y ~ - ' / ( n  - 2)!  + . . .  + X~/3!  + X2/2! -- 1) 

Z ~  = 1 - n !  e - x 3 ( X ~ / ( n  - 1)! + X ~ - l / ( n  - 2)! + . . .  + X~3/3! + X a / 2 !  - 1) 

X2  = OI /T  and X 3 =  03 /T  

(D) I f  z~ 1 > z~t l > z~r 

K T = 2 4 C Z B / ( V n ) [ 1  -- 5 r n b  T - 1680zBD ] 

K L = 24C ZB/(VL1 ) [1 -- 30z a b L - 1680D z a] 

(34) 

(35) 

I t  should be noted that  in obtaining Eqs (34) and (35), the upper  limits o f  the 
first integrals in Eqs (26) and (27) are taken as infinity due to the very low value of  
tempera ture  T. I t  should also be noted that  the analytical expressions are obta ined 
in terms of  the numerical  values of  the constants  for  Ge. 

Phonon conductivity of Ge 

To see the applicability of  the expression proposed  for  T3p h-1 th rough  Eqs (15) 
and (16), the lattice thermal  conductivity of  Ge  has been calculated in the entire 
tempera ture  range 2 -  1000 K via Eqs (26) and (27) as an example.  The  dispersion 
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constants r are calculated with the help of the equation 

r = ( l lw~) (qv l  w - I) (36) 

and using the experimental dispersion curve (57) of Ge. The values of these con- 
stants are found to be the same as reported by Verma et al. (56). The values ob- 
tained are reported in Table 4. As far as the Casimir length of the crystal and the 
point-defect scattering strength are concerned, these two constants do not need 
any adjustment for Ge, due to the fact that they have been studied by several work- 
ers and the values obtained are nearly the same. In the present analysis, the values 
of L and A are taken from the earlier report of Holland [6]. The temperature ex- 
ponents mT, I(T), mL, I(T) and mL, H(T) for the three-phonon scattering relaxation 
rate have been calculated in the entire temperature range 2 -  1000 K with the help 
of Eqs (9) and (It)), and the values obtained are listed in Tables 5 -  7, respectively. 
To permit a comparative study of the temperature exponent re(T) with that used 
by Verma et al. [9] and also with the upper limit found by Guthrie, values of 
re(T) have also been calculated by the different methods and are given in Tables 
5 - 7 .  The variations of the various re(T) values with temperature are shown in 
Figs 1 - 3. 

The difficulties lie in estimating the three-phonon N and U process scattering 
strengths. This can be done with the analytical expressions reported in the preced- 
ing section. At low temperatures, "~3ph,-1 N >~ "lT-13ph, U" Thus rough values of B T N ,  I , 

BLN, I and BEN ,It at 15 K have been estimated with the analytical expressions in 
Eqs (32) and (33), ignoring the contribution due to the three-phonon U processes. 

- 1  -1 -1 and one can neglect ~'3ph, N at these Similarly, at high temperatures z3ph, u >> %ph, N 
temperatures. BTU,1, BLU, I and BLU, n at 400 K have been estimated with the ana- 
lytical expressions in Eqs (28) and (29). From the approximate values of these 
constants, better values have been obtained by numerical integration of the con- 

T a b l e  4 

T h e  c o n s t a n t s  a n d  p a r a m e t e r s  u s e d  in  t h e  c a l c u l a t i o n  o f  t h e  l a t t i c e  
t h e r m a l  c o n d u c t i v i t y  o f  G e  in  t h e  t e m p e r a t u r e  r a n g e  2 - - 1 0 0 0  K 

VT1 = 3 .55  105 c m / s e c  
VL~ = 4 . 9 2  105 c m / s e c  

VT2 = 1 .30  105 c m / s e c  
VL2 = 2 . 4 6  105 c m / s e c  
01 = 9 0  K 
03 = 118  K 

03 = 208  K 
04 = 3 1 9  K 
0 = 3 7 6  K 

----- 2 . 0  
r~ = 2 .95  10 -27 sec  2 

r2 = 8 .28  10 -27 sec  -~ 

r 3 = 0 
r4 = 1 .13 10 -27 sec  2 
T~ 1 = 1 .96  100 sec  -1  

A = 2 .4  10 - a s e c  3 
BTN, I =  1 .0  10 - 1 2 d e g  - m  

BTU, I = 1 .95  10 - 6  d e g  - m  
BLN, I ~ 1 .2  10  -23 sec  d e g - m  
BLu, I = 1 .0  10 -20 sec  d e g - m  

BLN, U = 2 .0  10 -21 sec  d e g  - m  

BLu, n = 5 .0  10 -18 sec  d e g - m  
BaT = 1 .0  10 - 2 3 s e c d e g - 2  
BHL = 1 .0  10 -23 s e e d e g  - 2  
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Table 5 

The temperature exponent mr,~(T) used for class I events 
for transverse phonons,  m(SDV represents the value used 
in the SDV model and m(Guthrie) represents the upper 
limit of the temperature exponent obtained by Guthrie 

Temperature 
T ,K  

1000 
9O0 
800 
700 
600 
500 
400 
300 
2O0 
100 
90 
80 
70 
6O 
50 
40 
30 
20 
10 
8 
6 
4 
2 

re(Present) 

1.00116 
1.00143 
1.00181 
1.00237 
1.00322 
1.00464 
1.00724 
1.0186 
1.02884 
1.11343 
1.13931 
1.17505 
1.22630 
1.30328 
1.42506 
1.63793 
2.04521 
2.96621 
4.0 
4.0 
4.0 
4.0 
4.0 

m(SDV) 

1.02610 
1.02932 
1.03339 
1.03868 
1.04583 
1.05600 
1.07154 
1.09816 
1.15392 
1.34312 
1.38994 
1.45094 
1.53334 
1.64988 
1.82490 
2.10974 
2.63833 
3.74792 
4.0 
4.0 
4.0 
4.0 
4.0 

m(Guthrie) 

1.00232 
1.00286 
1.00362 
1.00473 
1.00644 
1.00927 
1.01448 
1.02572 
1.05768 
1.22685 
1.27862 
1.35010 
1.45259 
1.60656 
1.85213 
2.27586 
3.09042 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 

275 

m A 

x•z \\ \ ,,'~ 
l l "~i-[ m(T)] ........ 

3 ~ ', -~ [m<T)]~o~ 

~ ,  ",\ 

I #- .... 

Tempera tu re  ~ K 

Fig. 1. The temperature exponent m.c,~(T) for  class 1 events for  transverse phonons for Ge, 
- - - - p r e s e n t  work;  - - - - - -  SDV model; - .  - .  - upper l imit  obtained by Guthr ie 
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m A 

3]- ~"~ll~"~ / [ m (T)] G~m~,. 

/ , 
1 i I I I , - -  ~ 

1 4 10 40 100 4.00 10(30 
Temperoture, K 

Fig. 2. The temperature exponent mL, I(T ) for class I events for longitudinal phonons for Ge, 
present work; - - - - - -  SDV model; - .  - .  - upper limit obtained by Guthrie 

Table 6 

The temperature exponent mL, I(T) used for class I events 
for longitudinal phonons,  m(SDV) represents the value used 
in the SDV model and m(Guthrie) represents the upper 
limit of the temperature exponent obtained by Guthrie 

Temperature, 
T, K re(Present) m(SDV) m(Guthrie) 

1000 
900 
80O 
700 
600 
5O0 
400 
300 
200 
100 

90 
8O 
7O 
6O 
5O 
40 
30 
20 
10 
8 
6 
4 
2 

1.00847 
1.01045 
1.01322 
1.01725 
1.02345 
1.03369 
1.05245 
1.09249 
1.20352 
1.73198 
1.87765 
2.06910 
2.32689 
2.68456 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 

1.03340 
1.03833 
1.04479 
1.05356 
1.06605 
1.08505 
1.11675 
1.17779 
1.32860 
1.96167 
2.12828 
2.34499 
2.63393 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 

1,01693 
1,02089 
1,02643 
1.03449 
1.04689 
1.06738 
1,10489 
1.18499 
1,40705 
2.46396 
2.75529 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
30  
3.0 
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mA 

1s . . . . . . . . . . .  ~'~ll"-" "V"~" [ m(T) ]G ...... , , ~ ' " ~  

k[m(r~lsov ,7 
%%%% ~ / 4 t d ~  

0.5 ] m",L (T)~/ I ~ ' ~  -. I [ [ 
4 ~0 40 lO0 400 lO00 

Temperature; K 

Fig. 3. The temperature exponent  mL, n(T) for class I[ events for longitudinal phonons  for Ge, 
- - - -  present work;  . . . .  SDV model;  - .  - .  - upper limit obtained by Guthr ie  

Table 7 

The temperature exponent mL, n(T) used for class [I events 
for longitudinal phonons,  m(SDV) represents the value used 
in the SDV model and m(Guthrie)  represents the upper 
limit of the temperature exponent  obtained by Guthrie 

Temperature, 
T,K 

1000 
900 
800 
700 
600 
500 
400 
300 
200 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

8 
6 
4 
2 

re(Present) m(SDV) m(Guthrie) 

0.99789 
O.99739 
0.99670 
0.99570 
0.99416 
O.99162 
0.98699 
0.97720 
O.95068 
0.83754 
0.81016 
0.77665 
0.73587 
0.68717 
0.63156 
0.57398 
0.52610 
0.50274 
0.50 
0.50 
.050 
.050 
.050 

0.99791 1.0 
0.99742 1.0 
0.99674 1.0 
0.99575 1.0 
0.99423 1.0 
0.99172 1.0 
0.98716 1.0 
0.97751 1.0 
0.95144 1.0 
0.84097 1.0 
0.81449 1.0 
0.78226 1.0 
0.74341 1.0 
0,69776 1.0 
0.64737 1.0 
0.59974 1.0 
0.57407 1.0 
0.61476 1.0 
0.91414 1.0 
1.0 1.0 
1.0 1.0 
1.0 1.0 
1.0 1.0 
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K 

I0,C 

1C 

0.4 

J I . . . .  I I .  I ~ m P -  
0.1 z, 10 z~O 100 z, O0 I 

Temperature~ K 

Fig. 4. The total lattice thermal conductivity of Ge in the temperature range 2-- 1000 K. KT 
and KL are the separate contr ibut ions due to transverse and  longitudinal phonons,  respectively. 

Solid line: calculated values, circles: experimental points 

Table 8 
The percentage contributions of the three-phonon scattering relaxation rate z~'~h,T towards the 
combined scattering relaxation rate z ~ r  due to transverse phonons  due to class I events in the 
absence of the four-phonon scattering processes for four different values of the pbonon 

frequency. Wma x represents the maximum frequency of the transverse phonons  

--1 
~o 3Ph, T o 3ph, T o 3pll, T 

T e m p e r a t u r e ,  T, K 
fo r  w = I / 4  Wmax for  w = 1/~ Wmax fo r  w = 3]4 Wmax for  w = Wmax 

I 1000 
9O0 
8OO 
700 
600 
50O 
400 
3O0 
2O0 
100 
90 
8O 
70 
60 
5O 
40 
30 
20 
10 

8 
6 
4 
2 

76.24 
75.89 
75.46 
74.89 
74.14 
73.08 
71.49 
68.84 
63.62 
49.71 
47.10 
44.11 
40.66 
36.69 
32.14 
26,88 
20,34 
10,36 

0,20 
0.10 
0,04 
0.01 
0 

86.52 
86.30 
86.01 
85,65 
85.15 
84.45 
83,38 
81.55 
77,77 
66,41 
64.04 
61.21 
57,8l 
53,68 
48.65 
42.37 
33,80 
18,78 

0,40 
0,20 
0.08 
0.02 
0 

90.59 
90,43 
90.22 
89.94 
89.59 
89.07 
88.27 
86.89 
83.99 
74.78 
72.26 
70.30 
67.27 
63.49 
58.70 
52.45 
43.36 
25.73 

0.58 
0.28 
0.11 
0.02 
0 

92.77 
92.64 
92.48 
92.27 
91.98 
91.57 
90.94 
89.84 
87.49 
79.81 
78.08 
75.94 
73.26 
69.86 
65.45 
59.52 
50.50 
31.53 

0.74 
0.34 
0.11 
0.02 
0 
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A 

1~176 I / / ~  
,:2_ KT 

S 8~ 

&< I 

O ~ 20[ ~'X ~176 
O L - - -  [ I " ' - ~ - -  

1 4 10 40 100 400 I000 ~ '  
Temperature~ K 

Fig. 5. The percentage contributions of transverse and longitudinal phonons  towards the total 
lattice thermal conductivity of  Ge. Solid line: ~ KT; dotted line: % KL 

Table 9 

~--i towards The percentage contributions of the three-phonon scattering relaxation rate 3oral 
the combined scattering relaxation rate TgL ~ due to longitudinal phonons  due to the combined 
effect of class I[ events in the absence of four -phonon processes for four different values of the 

phonon  frequency, wm~ represents the max imum frequency of longitudinal phonons  

Tempera ture ,  T, K 

1000 
900 
8OO 
700 
600 
5OO 
400 
300 
200 
100 

9O 
8O 
70 
60 
5O 
4O 
3O 
2O 
10 

8 
6 
4 
2 

~ph, L 
for w I/4 Wmax 

99.94 
99.93 
99.92 
99.90 
99.88 
99.84 
99.77 
99.63 
99.14 
93.92 
91.84 
89.63 
89.06 
91.99 
92.40 
72.62 
25.58 

4.13 
0.69 
0.44 
0.28 
0.18 
0.11 

~, T3pIL 

for w ~ 1/2 Wmax 

99.74 
99.71 
99.66 
99.60 
99.51 
99.36 
99.11 
98.54 
96.66 
79.53 
73.89 
68.50 
67.20 
74.29 
75.35 
40.01 

7.96 
1.07 
0.17 
0.11 
0.07 
0.04 
0.03 

for w = 3/4 Wmax 

99.43 
99.35 
99.25 
99.11 
98.90 
98.58 
98.01 
96.78 
92.80 
63.34 
55.72 
49.15 
47.66 
56.23 
57.61 
22.87 

3.70 
0.48 
0.08 
0.05 
0.03 
0.02 
0.01 

t:3p~, L 

for w -- Wmax 

98.99 
98.85 
98.67 
98.42 
98.06 
97.50 
96.52 
94.41 
87.88 
49.28 
41.45 
35.22 
33.88 
41.95 
43.33 
14.30 
2.12 
0.27 
0.04 
0.02 
0.02 
0.01 
0 
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ductivity integrals in Eqs (26) and (27) at 15 K (near the conductivity maxima) 
and at 300 K (near room temperature). The four-phonon scattering strengths 
Bnx and BHL are estimated with the analytical expressions in Eqs (30) and (31), 
which are further corrected at 500 K by numerical integration of the conductivity 
integrals. The values obtained for these contents are listed in Table 4. From all the 
constants is Table 4 the lattice thermal conductivity of Ge has been obtained by 

10( 

w 

0.01 

. . . . . . . .  

% U processes 

I 
I 
! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I % N  processes 

4 10 40 100 
Temperctture, K 

-i for class I events for Fig. 6. The percentage contributions of z~.N and z~h,u towards Z3.ph, T 
transverse phonons for Ge in the temperature range 2-- 1000 K. Solid line: percentage contri- 

bution due to r3ph, u , - I  �9 dotted line: percentage contribution due to T3ph, N-1 

calculating the separate contributions due to transverse and longitudinal phonons 
in the entire temperature range 2 - -1000K;  the result is shown in Fig. 4. Each 
contribution has been estimated by numerical integration of the conductivity in- 
tegrals with an HP-9830A mini computer. The separate percentage contributions 
of transverse and longitudinal phonons have also been studied in the entire temper- 
ature range of study and the results are shown in Fig. 5. 

To study the roles of three-phonon N and U processes, the percentage contri- 
butions of %ph,-1 N and %ph,-t u towards z~lh have been calculated for class I events for  
transverse phonons, and for class I and class II events for longitudinal phonons. 

-1 (classI) The results are shown in Figs 6 -  8. The percentage contributions of Z3ph, T 
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for transverse phonons and T3ph,-1 L (class I + class II) for longitudinal phonons  
towards the combined scattering relaxation rate of  the respective modes z -1 and c, T 

- 1  %,L are listed in Tables 8 and 9. The percentage contributions of  T3ph, L - 1  (class I) 
and T3ph,-1 L (class II) towards z -~r have also been calculated and are reported in 
Tables 10 and 11. 

t 
~o 10c 

u 

0 
~E 

01!- 

~176 [ 
4 

I r~ 
I 

I 
I 

~%N 

\ 
\ 

/* U processes 

processes 

\ % 
%% 

% 

~-o loo 4oo iooo 
Temperature, K 

Fig. 7. The percentage contributions of z -t3~h,N and T3ph.-~ u towards z~.L~ for class 1 events 
for longitudinal phonons for Ge in the temperature range 2--1000 K. Solid line: percentage 

-1 " dotted line: percentage contribution due to z ~  N contribution due to z3p~.v, 

A comparative study of the present analysis with previous analysis 

In this section, a comparative study between the present analysis and the pre- 
vious analyses of  other workers has been made. From Tables 1 and 2 it is clear 
that Callaway used z~lh~ w 2 T ~ in the entire temperature range 2 -  100 K, although 
this is valid at low temperatures only. Callaway did not make any distinction be- 
tween transverse and longitudinal phonons and his entire analysis is valid for 
longitudinal phonons,  except for the average phonon velocity. Due to this, Calla- 
way could not get good agreement at high temperature (see Fig. 2 of  ref. (6)). 
Holland [6] and Verma et  al. [56] calculated the phonon conductivity of  Ge in the 
temperature range 2 -  1000 K using two-mode conduction of  phonons. However,  
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from Tables 1 and 2 i t  is  clear that they used -1  173ph, N O~ w T  & f o r  transverse phonons 
and Z~-p~h,N a w2TZ for longitudinal phonons in the entire temperature range of  study, 
which are valid for low-frequency phonons and at low temperature only. At the 
same time, in calculating the contribution due to transverse phonons,  they could 
not include ~3ph, U - 1  in the range 0 -  1/2 qmax and ~-pth, N in the range 1/2 qm~ -- qmax" 
They totally ignored ~-1 in calculating the contribution due to longitudinal 3ph, U 

A 
o_ 

iE 
g 

I 
g i 

10 I 

I 

1 

01 t 

0.01~_ I I 
4 10 40 

I 
I 
I 
I 
I 

% N processes 

I, U processes ~, 

loo 400 1000"- 
Temperature~ K 

-1 and -~ towards -1 for class II events Fig. 8. The percentage contributions of T3oh. N ~3Ph, U T3ph, L, Ir 
for longitudinal phonons for Ge in the temperature range 2-- 1000 K, Solid line: percentage 

-1 �9 dotted line: percentage contribution due to "t'3ph, N contribution due to "r3ola.u , -1 

-1 w2/sin h(hw/kBT ) which they used for transverse phonons. The expression z3pn, u 
phonons gives a T-dependence for the three-phonon scattering relaxation rate 
which is valid at high temperatures only. Tiwari and Agrawal [58] also calculated 
the phonon conducitivity o f  Ge in the temperature range 2 - 1 0 0 0  K by using the 
expressions -1 T-1 "C3ph, T Ct wT m and 3ph, L c~ w2T m, which reveals that they employed the 
same temperature exponent value for both modes,  i.e. they used the same tempera- 
ture-dependence for transverse and longitudinal phonons,  though these should be 
different. It is clear from Table 2 that they considered only the contribution due to 
the three-phonon N processes in their analysis (for details, see Table 1 of  ref. (58)). 
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However, they used a better temperature dependence for z3~ h than the previous 
workers. 

The first attempt to incorporate the Guthrie expression for m(T) for z3~ h in the 
calculation of the lattice thermal conductivity was made by Verma et al., who 
proposed the new Sharma-Dubey-Verma (SDV) model [9, 10, 23 -25] .  In the SDV 
model, a continuous temperature exponent is used for the first time for the three- 
-phonon scattering relaxation rate. However, the expression for m(T) in the SDV 
model (see Eqs (5), (6) and (22) ofref. [9]) contains an empirical factor (1 + O/sT). 
At the same time, a careful analysis of Figs 1 -  3 and Tables 5 - 7  shows that at 
high temperatures the value of m(T) used in the SDV model is larger than the upper 
Guthrie limit. (This can also be seen in Figs 2 - 4  ofref. [9].) From Tables 1 and 
2 (and also from Eqs (20) and (21) of ref. [9]), it is clear that the expression used 
for Z31h in the SDV model does not include the contribution due to the three-pho- 
non N processes. As a result of this, they could not get good agreement at high 
temperatures (see Fig. 1 of ref. [9]). 

Table  10 

The  pe rcen tage  con t r i bu t i ons  of  the  t h r e e - p h o n o n  scat ter ing re laxa t ion  ra te  T~ ,L , I  t owards  
the  c o m b i n e d  scat ter ing re laxat ion  rate  Tg t due  to long i tud ina l  p h o n o n s  due  to t he  class I 
events  a lone  in the  absence  o f  f o u r - p h o n o n  processes  for  fou r  different  values  o f  the  p h o n o n  

f requency .  Wma x represen ts  the  m a x i m u m  f requency  of  long i tud ina l  p h o n o n s  

- - I  
% Z3Ph,  L, 1 

T e m p e r a t u r e ,  T ,  K 
f o r  w = 1 / 4  Wmax 

1000 0.21 
900 O.22 
800 0,22 
700 0.23 
600 0.24 
500 0.26 
400 0.30 
300 0.38 
200 0.75 
100 10.33 

90 18.10 
80 32.84 
70 56.61 
60 80.84 
59 88.35 
40 68.51 
30 23.64 
20 3.73 
10 0.45 

8 0.23 
6 0.11 
4 0.03 
2 0 

,, - I % 1 
~oo Z3Ph, L,  1 ~3Ph, L,  1 

f o r  w = 1 / 2  Wmax f o r  w = Wma x 

~o --1 
"C3Ph, L, 1 

for w = 3/4 

0.21 
0.22 
0.22 
0.23 
0.24 
0.26 
0.30 
0.38 
0.73 
8.73 

14.56 
25.18 
42.71 
65.29 
72,05 
37.75 

7.36 
0.97 
0.11 
0.06 
0.02 
0 
0 

Wmax 

0.21 
0.22 
0.22 
0.23 
0.24 
0.26 
0.29 
0.37 
0.70 
6.97 

10.98 
1 8 . 0 7  

30.30 
49.41 
55.09 
21.58 

3142 
0.43 
0.05 
0.03 
0.01 
0 
0 

0.21 
0.22 
0.22 
0.23 
0.24 
0.25 
0.28 
0.36 
0.67 
5.42 
8.17 

12.95 
21.53 
36.86 
41.43 
13.49 

1 . 9 6  

0.21 
0.03 
0.01 
0 
0 
0 
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Thus,  for  the first t ime,  the Guthr ie  expression for the t empera tu re  exponent  
re(T) for  Z3pah has been incorpora ted  in the calculat ion o f  the lat t ice thermal  con- 
duct ivi ty  wi thout  any empir ica l  factor.  A t  the same time, the contr ibut ions  due to 
th ree -phonon  N and U processes are also included for bo th  of  the  modes  in the 

-* and  -* entire  t empera tu re  range 2 -  10000 K. The cont r ibu t ions  due to T3ph, N ~'3ph, U 

have also been included in the ent ire  range o f  the first Bri l louin Zone,  i.e. bo th  N 
and  U processes have been considered in the same conduct iv i ty  integral.  The 
expression p r o p o s e d  for  the th ree -phonon  scat ter ing re laxat ion  ra te  is based on 
the division into class I and  class I I  events, and  also N and  U processes. The 
role  of  fou r -phonon  processes also is considered in the present  analysis.  

Table 11 

The percentage contribution of the three-phonon scattering relaxation rate T3ph,-I L,U towards 
the combined scattering relaxation rate T~,L due to longitudinal phonons due to class II events 
alone in the absence of four-phonon processes for four different values of the phonon frequency 

Wmax represents the maximum frequency of longitudinal phonon 

--I o --i --I 
.t3ph, L.11 ~ .C3Ph, L , l  I ~ --I  t3Ph. L, II ~ r L, II 

T e m p e r a t u r e ,  T,  K 
f o r  w = 1/4 Wmax f o r  w = 1/2 Wma x f o r  w = 3/4 Wmax f o r  w = Wmax 

1000 
900 
800 
700 
600 
500 
400 
300 
200 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
8 
8 
4 
2 

99.72 
99.71 
99.69 
99.67 
99.64 
99.58 
99.48 
99.25 
98.39 
83.58 
73.74 
56.68 
32.45 
11.15 
4.04 
4.10 
1.94 
0.40 
0.24 
0.21 
0.19 
0.15 
0.11 

99.53 
99.49 
99.44 
99.37 
99.27 
99.11 
98.81 
98.16 
95.93 
70.78 
59.33 
43.30 
24.48 

99.21 
99.13 
99.02 
98.88 
98.66 
98.32 
97.72 
96.40 
92.09 
56.37 
44.74 
31.09 
17.37 

9.00 
3.30 
2.26 
0.60 
0.10 
0.06 
0.05 
0.04 
0.03 
0.03 

6.81 
2.52 
1.29 
0.28 
0.05 
0.03 
0.02 
0.02 
0.01 
0.01 

98.78 
98.63 
98.45 
98.19 
97.83 
97.25 
96.23 
94.05 
87.21 
43.86 
33.28 
22.29 
12.34 
5.08 
1.90 
0.81 
0.16 
0.03 
0.02 
0.01 
0.01 
0.01 
0 
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Results and discussion 

We shall first discuss the expression proposed for Z3plh through Eqs (15) and (16). 
At low temperatures, the temperature exponents for transverse phonons, mT,~(T), 
and for longitudinal phonons, mE, l(T), reduce to 4 and 3, respectively, i.e. at low 
temperatures mT, x(T) ~ 4 and mL, i(T ) --* 3. Through numerical analysis of KL, 
it has been found that at low temperatures the scattering relaxation rate due to 
class I events dominates over the scattering relaxation rate due to class II events. 
At the same time, due to the low value of temperature T, the factor e -~ is very 
small. As a result, at low temperatures the expression proposed for ri~ n reduces 

1 - 1  to "C3ph, T = BTN,IWT 4 for transverse phonons, and to Z3ph, L = BLN,~W2T 3 for 
longitudinal phonons, which are similar to the earlier findings of Herring [1 ]. At 
the same time, they are similar to the expressions used by Joshi and Verma [l 1 ]. 

At high temperatures, the temperature exponents mw, I(T), me.l(T) and mL, u(T) 
all tend to unity. It is well known that at high temperatures the scattering relaxa- 
tion rate due to three-phonon U process dominates over the scattering relaxation 
rate due to three-phonon N processes. Thus, the expression for r3p~h used in the 

-~ = B w T e  -~ for transverse phonons, and to present analysis reduces to Z3ph, T 
Z3ph ,-1 C = B'wZTe -~ for longitudinal phonons. These expressions are similar to 
the findings of Klemens. It is interesting to point out that, in the absence of three- 
phonon N processes, the expression for ~31h proposed in the present work reduces 
to the expression used in the SDV model. 

The values of the temperature exponents mT, l(T), rnL, l(T ) and mL, n(T ) (as ob- 
tained from Eqs (9) and (10) used in the present analysis are reported in Tables 
5 - 7 .  Their continuous nature with temperature can be seen in Figs 1 - 3 .  With 
the help of Tables 5 - 7  and Figs 1 - 3 ,  it can be seen that at low temperatures 
mT, l(T) and mL~ I(T) tend to 4 and 3, respectively, which is the same as obtained 
by Herring [1 ] at low temperatures. It can also be seen that at high temperatures 
mr, a(T), mL,,(T ) and mL, n(T) all tend to unity, which results in z3r C~ T, similar 
to the earlier findings of Herring at high temperatures. It also results in Kc~ l IT  at 
high temperatures, which is similar to the previous findings. From these Figures, 
it is very clear that the value of re(T) used in the present analysis lies between 1 and 
4 for transverse phonons, and between 1 and 3 for longitudinal phonons, and it 
does not exceed the upper Guthrie limit any temperature. Thus, it is tree from 
Guthrie's comments [8] too. Therefore, one can say that the value of m(T)  used 
in the present analysis is more realistic than those used by previous workers. 

With the help of Fig. 4, it can be seen that the agreement between the calculated 
and experimental values of the lattice thermal conductivity is very good in the en- 
tire temperature range 2 - 1 0 0 0  K, which tells that the expression proposed for 
r32h in the present analysis gives a very good response to the experimental data of 
the lattice thermal conductivity at high as well as at low temperatures. The separate 
percentage contributions due to transverse and longitudinal phonons can be studied 
with the help of Fig. 5. From Figs 4 and 5 it can be concluded that at high tem- 
peratures most of the heat is carried by the transverse phonons alone, which is in 
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agreement with the findings of previous workers [6, 9 -  13]. It is also similar to the 
findings of Hamilton and Parrott [42] and Srivastava [59, 60] based on the varia- 
tional approach. 

The separate contributions due to three-phonon N and U processes can be 
studied via Figs 6 - 8 .  From these Figures it is clear that at low temperatures 

-1 for both transverse and longitudinal phonons, and 1 dominates over  T3ph, U T3ph, N 
also in both class I and class II events. This results in the dominating role of the 
three-phonon N processes in the lattice thermal conductivity at low temperatures. 
At high temperatures, the domination of -1 -1 273ph, U o v e r  2"3ph, N c a n  be seen from these 
Figures ; this shows that at high temperatures the lattice thermal resistivity is main- 
ly due to the three-phonon U processes. These conclusions are in agreement with 
the findings of the previous workers. 

The percentage contribution of z~p~h towards the combined scattering relaxation 
rate z~ 1 in the absence of the four-phonon scattering relaxation rate z~-lh can be 
seen in Tables 8 - 11. It is clear that at high temperatures Z31h dominates over the 
boundary and point-defect scattering relaxation rates, which has the result that at 
high temperatures the lattice thermal resistivity is mainly due to the three-phonon 
scattering relaxation rates. This is similar to the findings of Hamilton and Parrott 
based on the variational techniques, and also to those of Dubey [13] based on the 
relaxation time approach for Si. From Tables 10 and 11 it is obvious that -1 "/73ph, L 
(class II events) is much larger than "/73ph,-1 L (class I events) at high temperatures, 
which is similar to the results obtained by Verma et  al. [9, 10]. From these two 

-1 (class lI Tables it can also be seen that z7pih, L (class I events) is larger than "g3ph, L 
events) at low temperatures. 

The author  wishes to express his thanks to Dr. R. A. Rashid, Dr. R. H. Misho and Dr. G.  S. 
Verma for their interests in the present work. 
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R~SUM~ -- On a analys6, dans le cadre de la classification de Guthr ie  des ph6nom6nes de dif- 
fusion phonon-phonon  en deux classes, I et II, les vitesses de relaxation de la diffusion ~. 3 pho- 
nons et l 'on propose pour la premi6re lois, comme r6sultat de ce travail, une nouvelle expres- 
sion : 

- o l ~ T  m (T) Z~ 1 = (BN,1 + Bu, ie-~176 (x) + (BN, ne )g(w)T II 
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pou r  les vi tesses de re laxa t ion  de  la diffusion h t rois  p h o n o n s ,  p e r m e t t a n t  de calculer  la con-  
duct ivi t6  t h e r m i q u e  du  r6seau d ' u n  pr616vement. En  se se rvan t  de l ' express ion  propos6e  ci- 
dessus ,  on  a analys6 la conduct iv i t6  t h e r m i q u e  du  rgseau  de Ge  dans  l ' in terval le  de t emp6ra tu -  
res a l lant  de  2 h 1000K et le r6sul ta t  ob t enu  m o n t r e  u n  tr5s b o n  accord  avec les donn6es  exp6- 
r imenta les .  O n  d6crit  de  mSme le pou rcen t age  des  con t r ibu t ions  dues  aux  processus  n o r m a u x  
et  invers6s h t rois  p h o n o n s .  Le  r61e de p rocessus  h qua t r e  p h o n o n s  est auss i  inclus aux  t em-  
p6ra tures  61ev6es. Afin d ' e s t imer  une  valeur  approch6e  de la force d i f fusante  et de la conduct iv i t6  
du  p h o n o n ,  l ' express ion  ana ly t ique  peu t  aussi  ~tre ob t enue  dans  le cadre  de l ' express ion  pro-  
pos6e c i -dessus  p o u r  z ~ .  

ZUSAMMENFASSUNG - -  Die Dre i -Phonon-S t r euungs re l aXa t ionsgeschwind igke i t en  und  ihre  
T e m p e r a t u r e x p o n e n t e n  wurden ,  im R a h m e n  yon  Gu th r i e s  Klass i f iz ie rung der  P h o n o n - P h o -  
non -S t r euungse rgebn i s s e  als solche der  K l a s se  [ u n d  Klas se  II, ana lys ier t  und  als Ergebnis  
dieser  Arbe i t  wurde  z u m  ers ten  M a l  ein neue r  A u s d r u c k  

--OPxT m (T) "t'~ 1 = (BN, I + Bu,Ie-~ + (BN,II + Bu,ne )g(w)T II 

ftir die D r e i - P h o n o n - S t r e u u n g s r e l a x a t i o n s g e s c h w i n d i g k e i t e n  vorgesch lagen  u m  die Gi t te r -  
W/irmelei tf / ihigkeit  e iner  P robe  zu berechnen .  U n t e r  A n w e n d u n g  des  oben  vorgesch lagenen  
A u s d r u c k s  wurde  die Git ter-Wfirmelei t f / ihigkei t  yon  Ge  im T e m p e r a t u r b e r e i c h  von  2 bis  
1000K analys ier t  u n d  das  e rha l tene  Ergebnis  zeigt e ine sehr  gu te  ~ b e r e i n s t i m m u n g  mit  den  
Ve r suchsangaben .  Die  den  D r e i - P h o n o n  N o r m a l -  u n d  U m k l a p p - P r o z e s s e n  zuzusch re ibenden  
p rozen tua l en  Bei t rage werden  ebenfal ls  mitgetei l t .  Die  Rolle  der  V ie r -Phonon-Vorg~nge  ist 
bei h o h e n  T e m p e r a t u r e n  ebenfal ls  mi t  inbegriffen.  U m  e inen  ann/~hernden Wer t  tier Streu-  
ungss t / i rke  u n d  der  Phonon-Lei t f / ih igke i t  zu  schfitzen, wird der  ana ly t i sche  A u s d r u c k  a u c h  
~m R a h m e n  des  ftir r ~ ,  oben  vo rgesch lagenen  A u s d r u c k s  erhal ten.  

Pe3roMe - -  143yqeHa peYtaKcattaonrian CKOpOCTb TpeXqbOHOHOBOrO pacceaHag a ee TeMnepaTyp- 
x~a~ 3I(cnonenTa B paMxax Bbipa~eHi4n, npe~no~Kennoro Fyxpbe.  C~ynaH (I)oHOH-(I)oHOHOBOFO 
paccezn~n pa3~enenbi ~ia ~Ba Knacca: C06b~Trm I Knacca, B KOTOpbIX HOCIITeIIb d~OHOHa aHrinrn- 
~I~poBaH KOM6rIHaI~Ke~, rI C06bITUa II r nacca  - -  r~e  I-IOCI, ITeJ/b qbOHOHa aultar~aI4poBarI pac- 
ulert~eH~eM. B pe3ynbTaTe 3TOFO npe,asIo~eHo HoBoe abipameHHe 

- ~ -~  (T) (BN, n Bu, He ) g ( w ) T  IX z3p~ - -  (B~,I + ,- ,u, :e  j "l- + -o/~w m T) 

~IYlfl CKOpOCTI, I pe~aKca~a~t Tpex~OHOBHOBOFO pacceaHmq c u e ~ m  B~,i-mc~em~a pemeToaaofi  
TeI/~oHpoBo~HOCT~I o6pa3ua.  TeMi/epaTypHafl OKCnOHeHTa m(T)  5bvIa a3y~ena ~aa  oSor:x 
KJ/aCCOB CO6bIT~. B i(atlecTBe npr~Mepa 6~,ma npoar~a~3HpoBaHa pemeToqttafl TerLrionpoBo~- 
nocTr~ repMaHria S oSaacTr~ TeMnepaTyp 2 - -1000  K. 1 - I o ~ e a r n , m  peay~TaT~I  x o p o m o  COB- 
na~aar t  c aI:crteprIMeHTa~f~rIbrM~ ~artHbIMH. FIpa BIaICOKIeIX TeMr~epaTypax 6r~iaa nprtH~Ta BO 
BH~MaHHe poY~b qeTb:pex~oHOHOBbIX npoI~eCr ,~slfl yCTaHOBJ~erIVI~ npK6nr~x~eHHoro 3Haqertvt 
crm~,: pacceaHaa i~ qboHo~r~o~ npoBo~aMOCTa, ~blYlO '-~o~TyqeHO aaayii4T~vtecKoe BblpameH:4e Ha 
ocnose  ~ p a : r e I : r i s ,  npeano~reHI:Oro Ztna r3$ou.  

J. Thermal Anal. 19, 1980 


